Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Data Acquisition System and Data Processing for the New Thomson Scattering System on the COMPASS Tokamak
Aftanas, Milan ; Bílková, Petra ; Böhm, Petr ; Weinzettl, Vladimír ; Stöckel, Jan ; Hron, Martin ; Pánek, Radomír ; Scannell, R. ; Walsh, M.
The Thomson scattering (TS) will be one of crucial plasma diagnostics of the COMPASS tokamak. This newly build-up multi-point system consists of two Nd:YAG lasers (1.6J at 1064nm, 30Hz each) and cascade filter polychromators with avalanche photodiodes. It will enable measurements of both the electron temperature Te (20eV − 5000eV ) and density ne (1019 − 1020m−3) profiles with spatial resolution up to 3mm in the vertical direction in 56 spatial points. The uniquely designed complex data acquisition system based on fast analog digital convertors (1GS/s) reflects the need to retrieve/digitize the signal originated from scattering process of the laser pulse lasting less than 10ns. This paper presents a detailed review of the architecture of the control and the data acquisition (DAQ) system and its features. LabViewr will be used as a main layer for the TS data acquisition. Routines specifically written for controlling the DAQ of TS on COMPASS are presented.
Measurement of the Laser Beam Position and Width for the Thomson Scattering Diagnostics on Tokamak COMPASS
Aftanas, Milan ; Bílková, Petra ; Böhm, Petr ; Weinzettl, Vladimír ; Stöckel, Jan ; Hron, Martin ; Pánek, Radomír
COMPASS tokamak is equipped with new key diagnostic—Thomson scattering system. This unique multi-point system has been designed with the main aim to investigate electron density and temperature profiles on the COMPASS tokamak (R = 0.56 m, a = 0.18 m, BT max = 2.1 T). The spatial resolution is optimized namely for the pedestal studies (radial spatial resolution a/100). This contribution describes particular steps of optical alignment of the important part of the Thomson scattering system, Nd:YAG lasers (1.6 J at 1064 nm, 30 Hz). Laser beam width has to be precisely measured and laser beam position has to be precisely set before the measurement and checked for all laser shots to be able of decrypting the information about the plasma density and also to improve precision of the measurement. New tool for automatic measurement of the laser beam misalignment is introduced.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.